C-Nucleoside Studies. Part 21.1 Synthesis of Some Hydroxyalkylated Pyrroloand Thieno-[3,2-d]pyrimidines Related to Known Antiviral Acyclonucleosides

J. Grant Buchanan, ${ }^{a}$ David A. Craven, ${ }^{a}$ Richard H. Wightman ${ }^{\text {a }}$ and Michael R. Harnden ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, UK

${ }^{\text {b }}$ SmithKline Beecham Pharmaceuticals, Great Burgh, Epsom, Surrey KT18 5XQ, UK

Abstract

Treatment of (S)-4,5-isopropylidenedioxypentanonitrile 17 with ethyl formate and sodium hydride gave a hydroxymethylene derivative which interacted with aminoacetonitrile to give 3-cyano-methyleneamino-2-[(S)-isopropylidenedioxypropyl]acrylonitrile 19; this was elaborated via 3 -amino-2-cyano-4-[(S)-2,3-isopropylidenedioxypropyl]pyrrole 22 into 4-amino-7-[(S)-2,3-dihydroxy-propyl]pyrrolo[3,2-d]pyrimidine 9. Treatment of the hydroxymethylene derivative of 17 with methanesulphonyl chloride, followed by acetylthioacetonitrile and sodium carbonate in ethanol gave 3-amino-2-cyano-4-[(S)-2,3-isopropylidenedioxypropyl]thiophene 25, convertible in two steps into 4-amino-7-[(S)-2,3-dihydroxypropyl]thieno[3,2-d]pyrimidine 10.

Similar chemistry was employed for the conversion of 5,6 -isopropylidenedioxyhexanonitrile 30 into the higher homologues 4-amino-7-(3,4-dihydroxybutyl) pyrrolo- and thieno-[3,2-d]pyrimidine 11 and 12, and for the preparation of 4-amino-7-(4-hydroxy-3-hydroxymethylbutyl)pyrrolo[3,2d]pyrimidine 13 from 6-benzyloxy-5-benzyloxymethylhexanonitrile 41 . The hydroxyalkylated products 9-13 are C-nucleoside analogues of known antiviral agents, but did not display antiviral activity.

Since the discovery of the potent and selective antiherpes activity of acyclovir 1, considerable effort has been expended on the synthesis of related acyclonucleosides. ${ }^{2}$ Compounds which have emerged from this work and which display strong antiviral activity include ganciclovir $2,{ }^{3}$ penciclovir (BRL 39123), $3,{ }^{4}(S)$ DHPA 4^{5} and (R)-9-(3,4-dihydroxybutyl)guanine $5 .{ }^{6}$ There has recently been renewed interest in (S)-DHPA 4 with the recognition that its phosphonomethyl analogue 6 displays very useful broad-spectrum antiviral activity. ${ }^{7}$

We, ${ }^{1,8}$ and others ${ }^{2,9,10}$ have been interested in the synthesis of C-nucleoside analogues of effective antiviral acyclonucleosides. We have previously reported the synthesis of the pyrazolo $[4,3-d]$ pyrimidine analogue 7 of (S)-DHPA, ${ }^{8}$ but this, and similar compounds, ${ }^{1}$ did not display antiviral activity. However, the 8 -aza-analogue $\mathbf{8}$ of acyclovir $\mathbf{1}$ is much less active as an antiherpes agent than is acyclovir iself. ${ }^{11}$ Thus we were prompted to investigate whether replacement of the corresponding nitrogen atom in acyclic C-nucleosides such as 7 would lead to increased antiviral activity. In this paper, we report the synthesis of the pyrrolo[3,2-d]pyrimidine 9 and thieno[3,2-d]pyrimidine 10, related to 7 and to (S)-DHPA 4, the racemic higher homologues 11 and 12, structurally similar to 5 , and the branched-chain pyrrolo[3,2-d]pyrimidine 13 with the side-chain of penciclovir 3. Other workers have reported syntheses of some related pyrrolo[2,3- d]pyrimidine (7-deazapurine) acyclonucleosides. ${ }^{1,12}$

Our synthetic methods were based upon those developed for pyrrolo[3,2-d]pyrimidines by the Sloan-Kettering group, ${ }^{13}$ applied by them to the synthesis of pyrrolo $[2,3-d]$ pyrimidine C-nucleosides ${ }^{14-16}$ and extended to thieno $[3,2-d]$ pyrimidine systems. ${ }^{15.17}$ The principle of this method, as applied to an adenosine analogue, is outlined retrosynthetically in Scheme 1; an appropriately functionalized acetonitrile derivative is seen to act as the precursor of the heterocyclic system.
Thus, for the synthesis of 9 and 10, 1,2:5,6-di-O-isopropyl-idene-d-mannitol 14^{18} was treated with aqueous sodium periodate to give a solution of 2,3-O-isopropylidene-d-glyceraldehyde $\mathbf{1 5}$ (Scheme 2); this solution was treated directly with diethyl cyanomethylphosphonate and potassium carbonate to give the alkene 16, shown by ${ }^{1} \mathrm{H}$ NMR spectroscopy to be

1

4; $R=H$
6; $R=\mathrm{CH}_{2} \mathrm{PO}_{3} \mathrm{H}_{2}$

7

2; $X=0$
3; $\mathrm{X}=\mathrm{CH}_{2}$

5

8
predominantly the E-isomer ${ }^{19}$ ($E: Z$ ca, 3:1), in 89% overall yield. The alkene 16 could also be obtained, but with the Z isomer predominating, by a Wittig reaction between 15 and cyanomethylenetriphenylphosphorane, ${ }^{10}$ but the yield was somewhat inferior to that from the direct Wadsworth-Emmons method. We were also concerned that the need for isolation of 15 might lead to some racemization. Indeed, although the alkene $\mathbf{1 6}$ from either route could be reduced catalytically to the alkane $17,{ }^{10}$ material from the Wittig approach displayed a

considerably reduced optical rotation value as compared with that from the Wadsworth-Emmons synthesis.
The introduction of an α-formyl (hydroxymethylene) group into $\mathbf{1 7}$ could, after some experimentation, be accomplished using ethyl formate and sodium hydride in ether plus a little ethanol; the presumed intermediate 18 was not isolated, but could be trapped by reaction with aminoacetonitrile to give the aminomethylene compound 19 in 45% overall yield. Although obtained as a crystalline solid, 19 was seen by ${ }^{1} \mathrm{H}$ NMR to be a mixture ($3: 1$) of two isomers about the double bond. Attempts to carry out the formylation of $\mathbf{1 7}$ using formamide acetals ${ }^{20}$ were unsuccessful, as were similar reactions with other nitriles (see below) and with simple model aliphatic nitriles; this contrasts with the successful formation of $\mathbf{2 0}$ from interaction of the corresponding acetonitrile derivative and bis(dimethylamino)t -butoxymethane, ${ }^{21}$ and may reflect the slightly lesser acidity of the x-methylene positions in our nitriles as opposed to the equivalent position in the precursor of 20.
It had previously been demonstrated that cyclization of compounds such as 19 into pyrroles required protection of the amino function. ${ }^{13,14}$ Accordingly, 19 was treated with ethyl chloroformate and diazabicyclononane (DBN); when the N -ethoxy-carbonyl derivative had formed (TLC), an additional equivalent of DBN was added to effect formation of the N ethoxycarbonylpyrrole 21 (71%). This could be deprotected on nitrogen using sodium carbonate in methanol to give 22, which on treatment with formamidine acetate in ethanol gave the pyrrolopyrimidine 23. Hydrolysis of the isopropylidene group with aqueous acetic acid then gave dihydroxypropylpyrrolopyrimidine 9.
To prepare the thienopyrimidine system, intermediate 18 was prepared as described above, and, again without purification, was treated with methanesulphonyl chloride and triethylamine in chloroform to product the O-mesyl derivative 24 . The formation of 24, as a mixture of E and Z-isomers, could be seen by ${ }^{1} \mathrm{H}$ NMR, but this product proved somewhat unstable and so was directly treated with acetylthioacetonitrile and sodium carbonate in ethanol ${ }^{15}$ to give the thiophene $\mathbf{2 5}$ as a crystalline solid after chromatography. This thiophene could then be converted through reaction with formamidine acetate into the

Scheme 2

protected thienopyrimidine $\mathbf{2 6}$, and thence by acid hydrolysis into 10 , in good yield.

For the synthesis of the higher homologues 11 and $\mathbf{1 2}, 1,2-O-$ isopropylidene-glycerol (solketal, 27), was converted (Scheme 3) via the tosylate 28 into the iodide $29 .{ }^{22}$ Treatment of this iodide with acrylonitrile and sodium borohydride in the presence of tributylstannyl chloride and with irradiation from a medium-pressure mercury lamp ${ }^{23}$ gave the nitrile 30 in 66%

Scheme 3
yield. Formylation of $\mathbf{3 0}$ proceeded poorly even under the best conditions found (see above); when the hydroxymethylene derivative 31 was allowed to react with aminoacetonitrile, the enaminonitrile 32 was formed in only 9% overall yield, although a 66% recovery of unchanged nitrile 30 could be obtained. As in the case of the lower homologue, 32 was found to be a $3: 1$ mixture of geometrical isomers; since in the ${ }^{1} \mathrm{H}$ NMR spectrum the major isomer showed the alkene proton at lower field (δ 6.67) than did the minor isomer ($\delta 6.47$), the major isomer is tentatively assigned the E-stereochemistry.

When 32 was treated with ethyl chloroformate and DBN, the N-ethoxycarbonyl derivative 33 was formed, but, in contrast to the case of the lower homologue, this material did not cyclize on further treatment with DBN , and the derivative 33 could be isolated in moderate yield after chromatography; it is noteworthy that this material appeared by NMR to be a single geometrical isomer, but it was not possible to assign the stereochemistry. Cyclization of 33 did occur however on treatment of the latter with the stronger base, sodium ethoxide in ether, when the resultant reaction mixture was added to water, and stirred for 1 h , hydrolysis of the N-ethoxycarbonyl group occurred and the pyrrole 34 could be isolated in 73% yield after chromatography as a crystalline solid. The bicyclic
heterocycle could then be formed as previously by reaction with formamidine acetate, and the resultant pyrrolopyrimidine 35 could be deprotected in the sidechain to give 4 -amino-7-(3,4dihydroxybutyl)pyrimidine 11.
Synthesis of the thienopyrimidine $\mathbf{1 2}$ followed the same procedure as used for the lower homologue $\mathbf{1 0}$. Thus, the hydroxymethylene derivative 31 was treated with methanesulphonyl chloride and triethylamine to give the methanesulphonate 36 as evidenced by spectroscopic data; two isomers were apparent from the ${ }^{1} \mathrm{H}$ NMR spectrum. The instability of $\mathbf{3 6}$ precluded its full characterization, and it was converted directly into the thiophene 37 by the action of acetylthioacetonitrile and sodium carbonate in ethanol. The overall yield of the crystalline thiophene 37 was only $c a .5 \%$ based on the nitrile 30 , but again the bulk of the nitrile could be recovered unchanged after the formylation step. Condensation of 37 with formamidine acetate then gave the thienopyrimidine $\mathbf{3 8}$ which was deprotected with aqueous acetic acid to provide the target compound 12.

For the synthesis of the analogue 13, we commenced from the known intermediate $39,{ }^{24}$ accessible in three steps from diethyl malonate and bromoacetaldehyde dimethyl acetal. The acetal function of 39 was hydrolysed with aqueous trifluoroacetic acid (Scheme 4) and the aldehyde was directly treated with cyano-

Scheme 4
methylenetriphenylphosphorane to give the alkene 40 (91%) as a 3:2 mixture of E - and Z-isomers. Hydrogenation of this material proceeded smoothly to give the saturated nitrile 41. Formylation of nitrile 41 again proceeded in low yield to give, after reaction with aminoacetonitrile, the enaminonitrile 42 in 13% yield, but as in the previous cases a good recovery of unchanged nitrile 41 was possible. Treatment of 42 with ethyl chloroformate and DBN gave the N-ethoxycarbonyl derivative 43. Once again, this did not cyclize directly to the pyrrole with an excess of DBN, but on treatment of crude 43, identifiable by ${ }^{1} \mathrm{H}$ NMR, with sodium hydride and ethanol in ether followed by aqueous work-up, the pyrrole 44 was obtained as a white crystalline solid. The pyrrolopyrimidine $\mathbf{4 5}$ could be obtained from 44 by reaction with formamidine acetate, and side-chain deprotection by transfer hydrogenation gave the acyclonucleoside analogue 13. Satisfactory analytical data could not be obtained for 13, the figures obtained being consistently low for nitrogen (see Experimental below). The compound did, however, give a satisfactory high-resolution mass measurement
for the molecular ion (FAB mode), and the material was of high purity by HPLC.

Biological Data.-The acyclonucleoside analogues 9-13 were evaluated for activity against representative RNA and DNA viruses in cell cultures. At concentrations up to $100 \mu \mathrm{~g} \mathrm{~m}^{-1}$, no inhibition of replication was observed against influenza $\mathrm{A}(\mathrm{HK} / 1 / 68)$ virus or parainfluenza type 1 (Sendai) in MadinDarby canine kidney cells, against HSV-1(HFEM) in Vero (African green monkey kidney) cells, or against HSV-1(SC 16), HSV-2(MS), Varicella zoster virus (Ellen) and cytomegalovirus (AD 169) in MRC-5 (human fibroblast) cells. At the concentrations examined, none of the compounds was toxic to the cell monolayer.

Experimental

IR spectra were recorded on Perkin-Elmer 157G or 580 instruments; UV spectra were obtained on a Shimadzu UV-240 spectrophotometer. Mass spectrometry was performed using an updated M.S.9, or VG 70-70 and ZAB instruments. NMR spectra were recorded on Perkin-Elmer R12B, JEOL PMX60, Bruker WP 200SY and JEOL 270 MHz spectrometers with deuteriochloroform as solvent unless otherwise stated; J values are in Hz : primed locants refer to the sidechain atoms. Specific rotations were measured at room temperature on a BendixNPL 143D automatic polarimeter (path length 1 cm). M.p.s were determined in capillaries and are uncorrected. Adsorption chromatography was carried out on Kieselgel H type 60 (Merck 7734); an external pressure was applied to the top of columns. For TLC, pre-coated aluminium-backed plates [Kieselgel HF_{254} type 60 (Merck)] were used. Light petroleum refers to material of b.p. $40-60^{\circ} \mathrm{C}$. Organic extracts were dried with anhydrous magnesium sulphate.
(S)-4,5-Isopropylidenedioxypent-2-enonitrile 16.-A solution of sodium periodate $(4.9 \mathrm{~g})$ in water (15 ml) was added dropwise to a stirred suspension of 1,2:5,6-di- O-isopropylidene-d-mannitol $14^{18}(5 \mathrm{~g})$ and aqueous sodium hydrogen carbonate (5% $\mathrm{w} / \mathrm{v} ; 50 \mathrm{ml}$) at $0^{\circ} \mathrm{C}$. The mixture was stirred for 1 h at room temperature and then cooled to $0^{\circ} \mathrm{C}$, when diethyl cyanomethylphosphonate (7.5 g) was added, followed by aqueous potassium carbonate ($6 \mathrm{~mol} \mathrm{dm}^{-3} ; 65 \mathrm{ml}$). After 20 h at room temperature, the stirred mixture was extracted with dichloromethane ($3 \times 100 \mathrm{ml}$). The washed, dried extracts were evaporated to dryness and the resultant syrup was chromatographed on silica, with toluene-ether ($5: 1$) as eluent to give the unsaturated nitrile $16(5.2 \mathrm{~g}, 89 \%)$ as an oil; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2220$ $(\mathrm{C} \equiv \mathrm{N})$ and $1630(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 1.32$, $1.40($ each $3 \mathrm{H}, \mathrm{s}$, CMe_{2}), $3.61\left(0.75 \mathrm{H}\right.$, dd, $J 8.5,6.5,5-\mathrm{H}_{\mathrm{a}}$ trans $), 3.63(0.25 \mathrm{H}, \mathrm{dd}, J$ $8.5,6.6,5-\mathrm{H}_{\mathrm{a}}$ cis), $4.14\left(0.75 \mathrm{H}, \mathrm{dd}, J 8.5,6.8,5-\mathrm{H}_{\mathrm{b}}\right.$ trans $), 4.20$ ($0.25 \mathrm{H}, \mathrm{dd}, J 8.5,6.5,5-\mathrm{H}_{\mathrm{b}}$ cis), 4.59 ($0.75 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ trans $), 4.92$ ($0.25 \mathrm{H}, \mathrm{m}, 4-\mathrm{H} c i s), 5.43(0.25 \mathrm{H}, \mathrm{dd}, J 11.1,1.2,2-\mathrm{H}$ cis), 5.66 ($0.75 \mathrm{H}, \mathrm{dd}, J 16.1,1.75,2-\mathrm{H}$ trans), 6.43 (0.25 H , dd, $J 11.1,8.2$, $3-\mathrm{H}$ cis) and $6.64(0.75 \mathrm{H}, \mathrm{dd}, J 16.1,4.6,3-\mathrm{H}$ trans $)$.
(S)-4,5-Isopropylidenedioxypentanonitrile 17.-The alkene 16 $(2.0 \mathrm{~g})$ in methanol (50 ml) was hydrogenated over palladiumcharcoal (5%). The reaction mixture was filtered and evaporated, and the residue was chromatographed on silica, with toluene-ether ($3: 1$) as eluent, to give the saturated nitrile 17^{10} ($1.6 \mathrm{~g}, 79 \%$) as a colourless oil, $[\alpha]_{\mathrm{D}}-27.3^{\circ}\left(c 1.1\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 2240(\mathrm{C} \equiv \mathrm{N}) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 1.19,1.28$ (each $3 \mathrm{H}, \mathrm{s}$, CMe_{2}), $1.71\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 2.35\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right), 3.45(1 \mathrm{H}, \mathrm{dd}, J$ $\left.8.0,5.5,5-\mathrm{H}_{\mathrm{a}}\right), 3.93\left(1 \mathrm{H}, \mathrm{dd}, J 8.0,6.2,5-\mathrm{H}_{\mathrm{b}}\right)$ and $4.03(1 \mathrm{H}, \mathrm{m}$, 4-H).

3-Cyanomethyleneamino-2-[(S)-2,3-isopropylidenedioxy-
propyl]acrylonitrile 19.-A mixture of ethyl formate (12 ml), ethanol (0.3 ml) and ether (25 ml) was added dropwise over 8 h to a suspension of sodium hydride (2.88 g of 50%) and the nitrile 17. After the mixture had been stirred for a further 15 h at room temperature it was diluted with water (50 ml) and the layers were separated. The aqueous phase, containing the sodium salt of 18, was neutralized with dilute hydrochloric acid and extracted with chloroform ($3 \times 75 \mathrm{ml}$). The dried extracts were evaporated to give crude 18, which was dissolved in methanol $(100 \mathrm{ml})$, to which was added anhydrous sodium acetate $(2.6 \mathrm{~g})$, aminoacetonitrile hydrochloride (2.6 g) and water (4.4 ml). The mixture was stirred for 20 h , diluted with chloroform (300 ml) and poured onto ice. The washed, dried organic layer was evaporated to give a yellow solid which was purified by chromatography on silica, with toluene-ether ($1: 1$) as eluent. Recrystallization from methanol-toluene gave enaminonitrile $19(2.0 \mathrm{~g}, 45 \%)$, m.p. $120^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}-13.9^{\circ}(c 0.72$ in MeOH$)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3280(\mathrm{NH}), 2205(\mathrm{C} \equiv \mathrm{N})$ and $1640(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 1.33,1.34,1.39,1.42$ (total $6 \mathrm{H}, 4 \mathrm{~s}, \mathrm{CMe}_{2}$), 2.31 ($2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}$), 3.59 ($0.25 \mathrm{H}, \mathrm{dd}, J$ 8.1, 7.3, $3^{\prime}-\mathrm{H}_{\mathrm{a}}$), 3.61 (0.75 $\left.\mathrm{H}, \mathrm{dd}, J 8.0,6.2,3^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 3.98,4.00\left(2 \mathrm{H}, 2 \mathrm{~s}, \mathrm{CH}_{2} \mathrm{CN}\right), 4.03$ $\left(0.25 \mathrm{H}\right.$, dd, $\left.J 8.0,6.5,3^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.05\left(0.75 \mathrm{H}, \mathrm{dd}, J 8.0,6.1,3^{\prime}-\right.$ $\left.\mathrm{H}_{\mathrm{b}}\right), 4.2\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 5.77(0.25 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 6.22(0.75 \mathrm{H}, \mathrm{br}$, $\mathrm{NH}), 6.54(0.25 \mathrm{H}, \mathrm{d}, J 12, \mathrm{C} H \mathrm{NH})$ and $6.76(0.75 \mathrm{H}, \mathrm{d}, J 12$, $\mathrm{C} H \mathrm{NH}) ; \delta_{\mathrm{C}}(50 \mathrm{MHz}) 25.3$ and $26.6\left(\mathrm{CMe}_{2}\right), 30.9$ and $34.4(\mathrm{C}-$ 1^{\prime}), 34.9 and $35.4(\mathrm{C}-4), 68.1$ and $68.2\left(\mathrm{C}-3^{\prime}\right), 74.7$ and 75.6 (C$\left.2^{\prime}\right), 77.5$ and $79.4(\mathrm{C}-2), 109.3$ and $109.5\left(\mathrm{CMe}_{2}\right), 115.9,116.0$, 118.7 and $122.1(\mathrm{CN})$ and $148.7(\mathrm{C}-3$) (Found: C, 59.3; H, 6.7; N, $18.8 \% ; \mathrm{M}^{+}, 221.1164 . \mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires C, 59.7; $\mathrm{H}, 6.8 ; \mathrm{N}$, 19.0%; M, 221.1163).

Ethyl 3-Amino-2-cyano-4-[(S)-2,3-isopropylidenedioxypro-pyl]pyrrole-1-carboxylate 21.-The nitrile $19(5 \mathrm{~g})$ in dichloromethane (115 ml) was treated at $0^{\circ} \mathrm{C}$ with DBN $(5.7 \mathrm{~g})$ and a solution of ethyl chloroformate (3.94 g) in dichloromethane (23 ml). When formation of the N-ethoxycarbonyl derivative was complete (by TLC; ca. 1 h), further DBN (2.85 g) was added and the mixture was stirred at room temperature for 20 h . After evaporation to dryness the residue was chromatographed on silica, with toluene-ether $(2: 1)$ as eluent. Recrystallization from ether-light petroleum gave the ester 21 $(4.7 \mathrm{~g}, 71 \%)$ as white crystals, m.p. $61^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}-11.6^{\circ}(c 0.9$ in $\mathrm{MeOH}) ; \mathrm{v}_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3370(\mathrm{NH}), 2190(\mathrm{C} \equiv \mathrm{N})$ and 1720 $(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 1.33,1.40\left(\right.$ each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right), 1.40(3 \mathrm{H}, \mathrm{t}$, $\left.J 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.49\left(1 \mathrm{H}, \mathrm{dd}, J 15.2,6.5,1^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 2.68(1 \mathrm{H}, \mathrm{dd}$, $\left.J 15.1,3.5,1^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 3.55\left(1 \mathrm{H}, \mathrm{dd}, J 8.1,7.5,3^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 4.03(1 \mathrm{H}, \mathrm{dd}, J$ 8.1, 6.2, $\left.3^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.22\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 4.42\left(2 \mathrm{H}, \mathrm{q}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $4.45\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)$ and $7.10(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}) ; \delta_{\mathrm{C}}(50 \mathrm{MHz})$ $13.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 25.3$ and $26.4\left(\mathrm{CMe}_{2}\right), 28.0\left(\mathrm{C}-1^{\prime}\right), 63.9$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 68.2\left(\mathrm{C}-3^{\prime}\right) ; 75.6\left(\mathrm{C}-2^{\prime}\right), 86.3,109.4\left(\mathrm{CMe}_{2}\right), 113.4$, $114.5(\mathrm{CN})$, $123.9(\mathrm{C}-5), 148.4$ and $148.7 ; m / z 293\left(\mathrm{M}^{+}\right)$and 278 $\left(\mathrm{M}_{-\mathrm{CH}_{3}}\right)^{+}$(Found: C, 57.3; H, 6.5; N, 14.3. $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires C, $57.3 ; \mathrm{H}, 6.5 ; \mathrm{N}, 14.3 \%$).

3-Amino-2-cyano-4-[(S)-2,3-isopropylidenedioxypropyl]-

 pyrrole 22.-A solution of $21(10 \mathrm{~g})$ in methanol $(120 \mathrm{ml})$ was stirred with anhydrous sodium carbonate $(0.36 \mathrm{~g})$ for 1 h . Filtration, evaporation and chromatography of the residue on silica, eluting with toluene-ether $(1: 1)$ gave a solid which on recrystallization from ether-light petroleum gave the pyrrole $\mathbf{2 2}$ $\left(6.3 \mathrm{~g}, 84 \%\right.$), as white crystals, m.p. $85^{\circ} \mathrm{C},[x]_{\mathrm{D}}-3.3^{\circ}(c 0.9$ in $\mathrm{MeOH}) ; v_{\max } / \mathrm{cm}^{-1} 3430(\mathrm{NH}), 2205(\mathrm{C} \equiv \mathrm{N})$ and $1630 ; \delta_{\mathrm{H}}(200$ $\mathrm{MHz}) 1.33$ and $1.39\left(\right.$ each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right), 2.53(1 \mathrm{H}, \mathrm{dd}, J 15.0$, $\left.6.8,1^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 2.68\left(1 \mathrm{H}, \mathrm{dd}, J 15.0,4.3,1^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 3.58\left(1 \mathrm{H}, \mathrm{t}, J 7.9,3^{\prime}-\right.$ $\left.\mathrm{H}_{\mathrm{a}}\right), 3.98\left(2 \mathrm{H}, \mathrm{br} s, \mathrm{NH}_{2}\right), 4.03\left(1 \mathrm{H}, \mathrm{dd}, J 8.0,6.1,3^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.25$ $\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 6.51(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H})$ and $8.32(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}(50$ $\mathrm{MHz}) 25.5$ and $26.7\left(\mathrm{CM} e_{2}\right), 28.2\left(\mathrm{C}-1^{\prime}\right), 68.5\left(\mathrm{C}-3^{\prime}\right), 76.5\left(\mathrm{C}-2^{\prime}\right)$, 87.0, 109.4, 109.6, $115.1(\mathrm{CN}), 122.6(\mathrm{C}-5)$ and 143.2 (Found: C,59.7; H, 6.6; N, 18.9. $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $\mathrm{C}, 59.7 ; \mathrm{H}, 6.8 ; \mathrm{N}$, 19.0%).

4-Amino-7-[(S)-2,3-isopropylidenedioxypropyl] pyrrolo[3,2d] pyrimidine 23 .-A solution of $22(0.75 \mathrm{~g})$ and formamidine acetate $(1.06 \mathrm{~g})$ in ethanol (15 ml) was heated under reflux for 5 h , and evaporated to dryness. The residue was triturated with water, filtered and recrystallized from methanol-ether to give the pyrrolopyrimidine $\mathbf{2 3}(0.45 \mathrm{~g}, 54 \%)$ as a white solid, m.p. 305$308^{\circ} \mathrm{C}$ (decomp.), $[\alpha]_{\mathrm{D}}-12.1^{\circ}(c 0.4$ in MeOH$) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 3400 and $3320(\mathrm{NH})$ and $1650 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 1.32$ and 1.37 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}$), $2.95\left(1 \mathrm{H}\right.$, dd, $\left.J 14.6,6.5,1^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 3.04$ ($1 \mathrm{H}, \mathrm{dd}, J 14.6,6.8,1^{\prime}-\mathrm{H}_{\mathrm{b}}$), $3.65\left(1 \mathrm{H}, \mathrm{dd}, J 8.1,7.1,3^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 3.97$ $\left(1 \mathrm{H}, \mathrm{dd}, J 8.2,6.0,3^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.44\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 6.70(2 \mathrm{H}$, br s, $\left.\mathrm{NH}_{2}\right), 7.39(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 8.13(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and $10.70(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{NH}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 25.7$ and $26.9\left(\mathrm{CMe}_{2}\right), 28.2\left(\mathrm{C}-1^{\prime}\right)$, 69.3 (C-3'), 76.6 (C-2'), $109.2\left(\mathrm{CMe}_{2}\right), 110.5,114.1,132.5$ (C-6), 136.2, 145.7 (C-2) and 154.0; $\lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 249$ ($\left.\varepsilon 10540\right)$ and $288(10710)$ (Found: C, $57.8 ; \mathrm{H}, 6.5 ; \mathrm{N}, 22.4 \% ; \mathrm{M}^{+}$, 248.1272. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires $\mathrm{C}, 58.1 ; \mathrm{H}, 6.5 ; \mathrm{N}, 22.6 \%$; M, 248.1274).

4-Amino-7-[(S)-2,3-dihydroxypropyl] pyrrolo[3,2-d]pyrimidine 9.-A solution of the protected compound $23(0.2 \mathrm{~g})$ in aqueous acetic acid $(80 \% ; 15 \mathrm{ml})$ was heated under reflux for 0.5 h. Evaporation gave a white solid which was crystallized from methanol to give the diol $9\left(145 \mathrm{mg}, 86 \%\right.$), m.p. $245^{\circ} \mathrm{C}$ (decomp.), $[\alpha]_{\mathrm{D}}-35.4^{\circ}\left(c 0.5\right.$ in MeOH); $v_{\text {max }} / \mathrm{cm}^{-1} 3400$ and $3320(\mathrm{OH}, \mathrm{NH})$ and $1650 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz},\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO) 2.65 $\left(1 \mathrm{H}, \mathrm{dd}, J 14.5,6.8,1^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 2.86\left(1 \mathrm{H}, \mathrm{dd}, J 14.6,5.0,1^{\prime}-\mathrm{H}_{\mathrm{b}}\right) 3.22$ $\left(1 \mathrm{H}, \mathrm{dd}, J 11.0,5.8,3^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 3.30\left(1 \mathrm{H}, \mathrm{dd}, J 11.0,5.5,3^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 3.5$ (1 H, br s, OH), $3.69\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 3.69\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right)$, ca. 5.3 $(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 6.7\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 7.33(1 \mathrm{H}, \mathrm{d}, J 2.5,6-\mathrm{H}), 8.08$ $(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and $10.7(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 26.7$ (C-1'), 64.5 (C-3'), 71.1 (C-2'), 108.0, 112.0, 131.7 (C-6), 134.1, $143.8(\mathrm{C}-2)$ and $150.8 ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 256(\varepsilon 10600)$ and 286 (12 820) (Found: MH^{+}, 209.1021. $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires 209.1038).

3-Amino-2-cyano-4-[(S)-2,3-isopropylidenedioxypropyl]thiophene 25.-The nitrile $17(5.0 \mathrm{~g})$ was converted into the crude α-formyl derivative $18(3.0 \mathrm{~g})$ as described above for the preparation of 19 . This material in chloroform (100 ml) was treated with triethylamine $(2.75 \mathrm{ml})$, followed by dropwise addition at $0^{\circ} \mathrm{C}$ of methanesulphonyl chloride (2.06 g) in chloroform (40 ml). After 1 h at $0^{\circ} \mathrm{C}$, the organic layer was washed well with brine, dried and evaporated to give crude mesylate $24(3.4 \mathrm{~g})$ as a yellow oil; $\delta_{\mathrm{H}}(60 \mathrm{MHz}) 1.24$ and 1.32 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}$), $2.36\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}_{2}\right) 3.08$ and $3.13(3 \mathrm{H}, 2 \mathrm{~s}$, $\left.\mathrm{MeSO}_{2}\right) .3 .50(1 \mathrm{H}, \mathrm{m}), 3.8-4.3(2 \mathrm{H}, \mathrm{m})$ and 7.06 and $7.28(1 \mathrm{H}$, $2 \mathrm{~s}, 3-\mathrm{H})$.

This material, acetylthioacetonitrile (3.0 g), and anhydrous sodium carbonate (2.8 g) were heated under reflux in ethanol $(150 \mathrm{ml})$ under nitrogen for 3 h . The residue after evaporation was partitioned between chloroform (100 ml) and water (100 $\mathrm{ml})$. The organic phase was washed, dried and evaporated and the residue chromatographed on silica, with hexane-ether ($1: 1$) as eluent to give thiophene $25(1.1 \mathrm{~g}, 14.3 \%$ from 17) as white crystals, m.p. $61-62^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}-25.3^{\circ}(c 0.4$ in MeOH$) ; v_{\text {max }} / \mathrm{cm}^{-1}$ $3400\left(\mathrm{NH}_{2}\right), 2180(\mathrm{C} \equiv \mathrm{N})$ and $1650 ; \delta_{\mathbf{H}}(270 \mathrm{MHz}) 1.36$ and 1.40 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}$), $2.65\left(1 \mathrm{H}, \mathrm{dd}, J 15.1,7.1,1-\mathrm{H}_{\mathrm{a}}\right), 2.83(1 \mathrm{H}$, dd, $\left.J 15.1,3.4,1^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 3.61\left(1 \mathrm{H}, \mathrm{t}, J 7.9,3^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 4.10(1 \mathrm{H}, \mathrm{dd}, J$ 8.1, 6.2, $\left.3^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.28\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 4.91\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)$ and 7.04 $(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}) ; \delta_{\mathrm{C}}(70 \mathrm{MHz}) 25.5$ and $26.6\left(\mathrm{CMe}_{2}\right), 32.0\left(\mathrm{C}-1^{\prime}\right), 68.4$ (C-3'), 75.9 (C-2'), $109.8\left(\mathrm{CMe}_{2}\right), 115.3(\mathrm{CN}), 128.7,129.3$ (C-5) and 155.4 (Found: C, $55.3 ; \mathrm{H}, 5.9 ; \mathrm{N}, 11.7 \% ; \mathrm{M}^{+}, 238.0769$. $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires C, $\left.55.5 ; \mathrm{H}, 5.9 ; \mathrm{N}, 11.8 \% ; \mathrm{M}, 238.0776\right)$.

[^0]d] pyrimidine 26.-Formamidine acetate (4.0 g) was added in several portions over a 4-day period to a refluxing solution of the thiophene $25(1.0 \mathrm{~g})$ in ethanol (60 ml). After evaporation, the residue was extracted with chloroform. The extracts were washed, dried and evaporated. Chromatography of the resultant material on silica, with hexane-ether $(1: 2)$ as eluent, followed by crystallization from chloroform-hexane gave the thienopyrimidine $26(0.75 \mathrm{~g}, 67 \%)$ as white crystals, m.p. 143$145^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}-20.6^{\circ}$ (c 0.6 in MeOH); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3300$ $\left(\mathrm{NH}_{2}\right)$ and $1560 ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 1.36$ and 1.44 (each 3 H , s, CMe 2), $3.14\left(1 \mathrm{H}, \mathrm{dd}, J 14.6,6.9,1^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 3.22(1 \mathrm{H}, \mathrm{dd}, J 14.7,5.4$, $\left.1^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 3.70\left(1 \mathrm{H}, \mathrm{dd}, J 8.2,6.9,3^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 4.06\left(1 \mathrm{H}, \mathrm{dd}, J 8.1,6.2,3^{\prime}-\right.$ $\left.\mathrm{H}_{\mathrm{b}}\right), 4.55\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 5.33\left(2 \mathrm{H}, \mathrm{br}\right.$ s, $\left.\mathrm{NH}_{2}\right), 7.63(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H})$ and $8.64(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}) ; \delta_{\mathbf{c}}(70 \mathrm{MHz}) 25.6$ and $27.0(\mathrm{CMe} 2), 31.6$ (C-1'), 68.9 (C-3'), 74.8 (C-2'), $109.2\left(\mathrm{CMe}_{2}\right), 115.0,128.9(\mathrm{C}-6)$, 133.9, $154.6(\mathrm{C}-2), 158.0$ and $159.2 ; \lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 250(\varepsilon$ 8600) and 293 (9970) (Found: C, 54.2; H, 5.7; N, $15.8 \% ; \mathrm{M}^{+}$, 265.0869. $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 54.3 ; \mathrm{H}, 5.7 ; \mathrm{N}, 15.8 \%$; M , 265.0885).

4-Amino-7-[(S)-2,3-dihydroxypropyl]thieno[3,2-d] pyrimidine 10.-The derivative $26(400 \mathrm{mg})$ was treated with acetic acid-water $(1: 1 ; 150 \mathrm{ml})$ at $70^{\circ} \mathrm{C}$ for 1 h . Evaporation of the mixture and recrystallization of the residue from methanolether gave the diol 10 as white crystals, m.p. $160-161^{\circ} \mathrm{C},[x]_{\mathrm{D}}$ -34.0° ($c 1.4$ in MeOH$) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3300$ and $1560 ; \delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz},{ }^{2} \mathrm{H}_{6}\right]$-DMSO $2.75\left(1 \mathrm{H}, \mathrm{dd}, J 14.3,7.7,1^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 3.00(1 \mathrm{H}$, dd, $\left.J 14.3,4.7,1^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 3.30\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{2}\right), 3.80\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right)$, $4.67(1 \mathrm{H}, \mathrm{t}, J 6, \mathrm{OH}), 4.87(1 \mathrm{H}, \mathrm{d}, J 5, \mathrm{OH}), 7.39(2 \mathrm{H}$, br s, $\left.\mathrm{NH}_{2}\right), 7.77(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H})$ and $8.38(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}) ; \delta_{\mathrm{C}}(70 \mathrm{MHz}$, $\left[{ }^{2} \mathrm{H}_{6}\right]$-DMSO) $31.9\left(\mathrm{C}-1^{\prime}\right), 65.4\left(\mathrm{C}-3^{\prime}\right), 70.7\left(\mathrm{C}-2^{\prime}\right), 114.0,129.2$ (C-6), 134.5, 154.3 (C-2), 158.50 and $158.54 ; \lambda_{\text {max }}(E t O H) / \mathrm{nm} 262$ ($\varepsilon 13030$) and $315(11260) ; m / z(\mathrm{FAB}) 226\left(\mathrm{MH}^{+}\right)$(Found: C, 47.7; $\mathrm{H}, 5.0 ; \mathrm{N}, 18.5 . \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 48.0 ; \mathrm{H}, 4.9 ; \mathrm{N}$, 18.7%).

5,6-Isopropylidenedioxyhexanonitrile $\mathbf{3 0}$.-A solution of the iodide $29^{22}(20 \mathrm{~g})$, acrylonitrile (56 ml) and sodium borohydride $(4.8 \mathrm{~g})$ in ethanol (500 ml) was irradiated with a mediumpressure mercury lamp at room temperature whilst tributylstannyl chloride (5.3 g) in ethanol (40 ml) was added dropwise over 15 min . After being irradiated for a further 1.5 h , the mixture was treated with a solution of potassium fluoride $(20 \mathrm{~g})$ in water (16 ml) for 4 h , filtered through MgSO_{4}, dried and evaporated. The residue was chromatographed on silica, with toluene-ether ($4: 1$) as eluent to give the nitrile $\mathbf{3 0}(9.2 \mathrm{~g}, 66 \%$) as a colourless oil; $v_{\max } / \mathrm{cm}^{-1} 2240(\mathrm{CN}) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 1.35,1.41$ (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}$), 1.65-1.9 (4 H, m, 3-H2, 4-H2), $2.43(2 \mathrm{H}, \mathrm{t}, J$ $\left.7,2-\mathrm{H}_{2}\right), 3.54\left(1 \mathrm{H}, \mathrm{dd}, J 7.3,6.2,6-\mathrm{H}_{\mathrm{a}}\right)$ and $4.1(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}, 6-$ $\left.\mathrm{H}_{\mathrm{b}}\right) ; \delta_{\mathrm{C}}(70 \mathrm{MHz}) 17.2(\mathrm{C}-3), 22.1(\mathrm{C}-4), 25.6$ and $26.9\left(\mathrm{CMe} e_{2}\right)$, 32.4 (C-2), 69.2 (C-6), 75.1 (C-5), $109.2\left(\mathrm{CMe}_{2}\right), 119.5(\mathrm{CN}) ; m / z$ $168(\mathrm{M}-\mathrm{H})^{+}$and $154(\mathrm{M}-\mathrm{Me})^{+}$[Found: $(\mathrm{M}-\mathrm{H})^{+}$, 168.1041. $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{NO}_{2}$ requires 168.1024].

3-Cyanomethyleneamino-2-(3,4-isopropylidenedioxybutyl)acrylonitrile 32.-To the nitrile $\mathbf{3 0}(16 \mathrm{~g})$ and sodium hydride $(50 \% ; 14.0 \mathrm{~g})$ in ether $(125 \mathrm{ml})$ was added dropwise over 8 h a mixture of ethyl formate (50 ml), ethanol (1 ml) and ether (125 ml). After a further 15 h at room temperature, water (200 ml) was added and the layers were separated. The aqueous phase was neutralized with dilute $\mathrm{HCl}\left(2 \mathrm{~mol} \mathrm{dm}^{-3}\right)$ and extracted with chloroform $(3 \times 300 \mathrm{ml})$. Drying and evaporation of the chloroform extract gave the crude hydroxymethylene derivative 31 (ca. 5 g). [Unchanged nitrile $3(10.5 \mathrm{~g})$ could be recovered from the ether layers.] Crude compound 31 in methanol (100 $\mathrm{ml})$ was treated with anhydrous sodium acetate $(3.25 \mathrm{~g})$, aminoacetonitrile hydrochloride (3.25 g) and water (5.5 ml). After being stirred for 20 h , the mixture was partitioned between
chloroform (400 ml) and ice-water $(100 \mathrm{ml})$. The washed, dried organic layer was evaporated and the residue chromatographed on silica, with toluene-ether (1:1) as eluent, to give the enamino nitrile $32(1.9 \mathrm{~g}, 8.5 \%)$ as a pale yellow oil; $v_{\text {max }} / \mathrm{cm}^{-1} 3350(\mathrm{NH})$, $2200(\mathrm{CN})$ and $1650(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 1.31,1.33,1.38$ and 1.40 (total $6 \mathrm{H}, 4 \mathrm{~s}, \mathrm{CMe}_{2}$), $1.72\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}\right), 2.20\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\right.$ $\left.\mathrm{H}_{2}\right), 3.56\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 3.9-4.2\left(4 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}_{\mathrm{b}}, \mathrm{CH}_{2} \mathrm{CN}\right)$, $5.01(0.25 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 5.41(0.75 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 6.47(0.25 \mathrm{H}, \mathrm{d}, J$ $12.5,3-\mathrm{H})$ and $6.67(0.75 \mathrm{H}, \mathrm{d}, J 12.5,3-\mathrm{H})$; δ_{C} (major isomer) $22.6\left(\mathrm{C}-2^{\prime}\right), 25.7$ and $26.9\left(\mathrm{CMe}_{2}\right), 31.5\left(\mathrm{C}-1^{\prime}\right), 35.4\left(\mathrm{CH}_{2} \mathrm{CN}\right)$, 69.1 (C-4'), 73.9 (C-3'), 83.1 (C-2), 109.1 (CMe_{2}), $116.0(\mathrm{CN})$, $121.6(\mathrm{CN})$ and $146.9(\mathrm{C}-3) ; m / z 235\left(\mathrm{M}^{+}\right), 222\left(\mathrm{M}-\mathrm{CH}_{3}\right)^{+}$ and $134\left(\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{2}\right)^{+}$(Found: $\mathrm{M}^{+}, 235.1350 . \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires 235.1342).

3-(N -Ethoxycarbonyl) cyanomethyleneamino-2-(3,4-isopropylidenedioxybutyl) acrylonitrile 33.-To a solution of the amine $32(2.5 \mathrm{~g})$ and DBN $(2.63 \mathrm{~g})$ in dichloromethane at $0^{\circ} \mathrm{C}$ was added dropwise ethyl chloroformate (1.71 g) in dichloromethane (10 ml). After 1 h , evaporation of the mixture and column chromatography of the residue on silica, with toluene-ether (2:1) as eluent, gave the urethane $33(1.52 \mathrm{~g}, 47 \%)$ as a pale yellow oil; $v_{\text {max }} / \mathrm{cm}^{-1} 2200(\mathrm{C} \equiv \mathrm{N}), 1730(\mathrm{C}=\mathrm{O})$ and $1650(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 1.31$ and $1.40\left(\right.$ each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right), 1.34(3 \mathrm{H}, \mathrm{t}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.8\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}\right), 2.4\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}_{2}\right), 3.55(1 \mathrm{H}, \mathrm{m}$, $4^{\prime}-\mathrm{H}_{\mathrm{a}}$), $4.05\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\mathrm{b}}, 3^{\prime}-\mathrm{H}\right), 4.34\left(2 \mathrm{H}, \mathrm{q}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.91$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CN}$) and $7.25(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$; $\delta_{\mathrm{C}}(50 \mathrm{MHz}) 14.2(\mathrm{Me})$, 25.5 and $26.8(\mathrm{CMe} 2), 30.0\left(\mathrm{C}-2^{\prime}\right), 32.4\left(\mathrm{C}-1^{\prime}\right), 33.6\left(\mathrm{CH}_{2} \mathrm{CN}\right)$, $64.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 69.0\left(\mathrm{C}-4^{\prime}\right), 74.2\left(\mathrm{C}-3^{\prime}\right), 93.7(\mathrm{C}-2), 109.0$ $\left(\mathrm{CMe}_{2}\right), 114.4$ and $116.8(\mathrm{CN}), 137.1(\mathrm{C}-3)$ and $152.2(\mathrm{CO})$ (Found; $\mathrm{M}^{+}, 307.1560 . \mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires 307.1531).

3-Amino-2-cyano-4-(3,4-isopropylidenedioxybutyl) pyrrole

 34.-To the ethoxycarbonyl compound 33 (1.5 g) in ether (30 ml) were added sodium hydride ($50 \% ; 0.48 \mathrm{~g}$) and ethanol (0.1 $\mathrm{ml})$. The mixture was stirred for 3 h and then diluted with water (5 ml); the two-phase mixture was then stirred vigorously for 1 h . The organic layer was separated, washed, dried and evaporated. Chromatography of the residue on silica, with toluene-ether ($2: 1$) as eluent, gave the pyrrole $34(1.1 \mathrm{~g}, 73 \%$) as a white solid, m.p. $92-93^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3300(\mathrm{NH}), 2200$ $(\mathrm{C} \equiv \mathrm{N})$ and $1630 ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 1.35$ and 1.42 (each 3 H , s, CMe_{2}), $1.74\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}\right), 2.43\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}_{2}\right), 3.52\left(1 \mathrm{H}, \mathrm{t}, 4^{\prime}-\right.$ H_{a}), $3.76\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 4.1\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 6.50(1 \mathrm{H}, \mathrm{s}$, $5-\mathrm{H})$ and $8.48(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}} 19.8\left(\mathrm{C}-2^{\prime}\right), 25.6$ and $26.9\left(\mathrm{CMe}_{2}\right)$, 33.7 (C-1'), 69.2 (C-4'), 74.9 (C-3'), $86.5,108.9\left(\mathrm{CMe}_{2}\right), 112.5$, 115.3, 121.6 and 142.4 (Found: $\mathrm{M}^{+}, 235.1342 . \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires 235.1320).4-Amino-7-(3,4-isopropylidenedioxybutyl) pyrrolo[3,2-d]pyrimidine 35 .-Formamidine acetate (0.9 g) and the pyrrole 34 $(0.7 \mathrm{~g})$ were heated under reflux in ethanol for 5 h . After evaporation of the mixture the residue was partitioned between ethyl acetate and water. The washed, dried organic extracts were then evaporated to give a solid which on crystallization from ethanol-toluene-light petroleum gave the pyrrolopyrimidine 35 $(0,44 \mathrm{~g}, 57 \%)$, m.p. $280-283^{\circ} \mathrm{C}$ (decomp.); $\delta_{\mathrm{H}}\left(200 \mathrm{MHz},\left[{ }^{2} \mathrm{H}_{6}\right]-\right.$ DMSO) 1.25 and 1.33 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}$), $1.87\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}\right)$, $2.7\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}_{2}\right), 3.42\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 4.0\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}_{\mathrm{b}}\right)$, $6.7\left(2 \mathrm{H}, \mathrm{brs}, \mathrm{NH}_{2}\right), 7.32(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 8.09(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and 10.6 ($1 \mathrm{H}, \mathrm{br}$ s, NH); $\delta_{\mathrm{C}}(50 \mathrm{MHz}) 20.0\left(\mathrm{C}-2^{\prime}\right), 25.6$ and $26.8\left(\mathrm{CMe}_{2}\right)$, 33.7 ($\mathrm{C}-1^{\prime}$), 68.5 ($\left.\mathrm{C}-4^{\prime}\right), 75.1\left(\mathrm{C}-3^{\prime}\right), 107.7\left(\mathrm{CMe}_{2}\right), 113.9,114.3$, 124.8, 125.0, 145.8, 149.7 and 150.2 (Found: MH^{+}, 263.1495. $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires 263.1508. Found: C, 59.2; H, 6.9; N, 21.9. $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires C, $59.5 ; \mathrm{H}, 6.9 ; \mathrm{N}, 21.4 \%$).

4-Amino-7-(2,3-dihydroxybutyl) pyrrolo[3,2-d]pyrimidine
11.--The protected compound $35(0.3 \mathrm{~g})$ in aqueous acetic acid $(1: 1 ; 10 \mathrm{ml})$ was heated at $70^{\circ} \mathrm{C}$ for 3 h . Evaporation and recrystallization from water-methanol-ether gave the diol 11 $(0.186 \mathrm{~g}, 73 \%) \mathrm{m} . \mathrm{p} .260-262^{\circ} \mathrm{C} ; \mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3200(\mathrm{NH})$ and 1660 ; $\delta\left(200 \mathrm{MHz},\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO) 1.55 and 1.79 (each $\left.1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right)$, $2.7\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}_{2}\right), 3.3-3.5\left(5 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}_{2}, 2 \times \mathrm{OH}\right), 6.7(2$ $\left.\mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 7.30(1 \mathrm{H}, \mathrm{d}, J 2.5,6-\mathrm{H}), 8.06(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and 10.6 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}$); $\delta_{\mathrm{c}}\left(50 \mathrm{MHz},\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO) 19.6 (C-2'), 34.1 (C$\left.1^{\prime}\right), 65.9,70.5,113.7,115.0,125.1,145.7,149.5$ and 150.2 ; $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 252(\varepsilon 10500)$ and 252 (7320) (Found: MH^{+}, 223.1211. $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires 223.1195. Found: C, $50.5 ; \mathrm{H}$, 6.7; $\mathrm{N}, 23.7 . \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 50.0 ; \mathrm{H}, 6.7 ; \mathrm{N}$, 23.3%).

3-Amino-2-cyano-4-(3,4-isopropylidenedioxybutyl)thiophene 37.-The nitrile $30(10 \mathrm{~g})$ was α-formylated as described above for the preparation of 32 to give crude compound $31(2 \mathrm{~g})$ and recovered $30(7.6 \mathrm{~g})$. Crude compound 31 in chloroform (40 ml) containing triethylamine (2 ml) was treated dropwise at $0^{\circ} \mathrm{C}$ with methanesulphonyl chloride (1.0 ml) in chloroform (25 ml). After 1 h , further chloroform (80 ml) was added, and the solution was washed (brine), dried and evaporated. Column chromatography of the residue on silica, with hexane-acetone ($1: 1$) as eluent, gave the mesylate $36(1.7 \mathrm{~g}) ; v_{\text {max }} / \mathrm{cm}^{-1} 2220$ (CN), 1380 and $1190\left(\mathrm{SO}_{2}\right) ; \delta_{\mathrm{H}}(90 \mathrm{MHz}) 1.34$ and 1.42 (each 3 $\mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}$), $1.8\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 2.4\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right), 3.21$ and 3.26 $\left(3 \mathrm{H}, 2 \mathrm{~s}, \mathrm{SO}_{2} \mathrm{Me}\right), 3.5(1 \mathrm{H}, \mathrm{m}), 4.1(2 \mathrm{H}, \mathrm{m})$ and 7.33 and $7.57(1$ $\mathrm{H}, 2 \mathrm{~s}, 3-\mathrm{H})$.
This material (1.5 g), acetylthioacetonitrile (1.2 g), and anhydrous sodium carbonate (1.2 g) were heated under reflux in ethanol (70 ml) for 7 h . The residue after evaporation was partitioned between chloroform and water (75 ml of each). The washed, dried organic layer was evaporated, and the residue was chromatographed on silica, with hexane-acetone (2:1) as eluent, to give, after recrystallization from ether-light petroleum, the thiophene 37 [$0.64 \mathrm{~g}, 4.7 \%$ from 30] as white crystals, m.p. $79-80^{\circ} \mathrm{C} ; v_{\text {max }} / \mathrm{cm}^{-1} 3350\left(\mathrm{NH}_{2}\right)$ and $2200(\mathrm{CN}) ; \delta_{\mathrm{H}}(270 \mathrm{MHz})$ $1.37,1.44$ (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}$), $1.8\left(2 \mathrm{H}, \mathrm{m}_{2} 2^{\prime}-\mathrm{H}_{2}\right), 2.6(2 \mathrm{H}, \mathrm{m}$, $\left.1^{\prime}-\mathrm{H}_{2}\right), 3.55\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 4.1\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.7(2 \mathrm{H}$, $\left.\mathrm{brs}, \mathrm{NH}_{2}\right)$ and $7.01(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H})$; $\delta_{\mathrm{c}}\left(70 \mathrm{MHz},\left[{ }^{2} \mathrm{H}_{6}\right.\right.$]-DMSO) 23.4 (C-2'), 25.6 and 26.9 (CMe $)^{\text {) }}$, 31.9 ($\mathrm{C}-1^{\prime}$), 66.4 ($\mathrm{C}-4^{\prime}$), 74.6 (C-3'), 76.0, $107.9\left(\mathrm{CMe}_{2}\right), 116.1$ (CN), 127.6 (C-5), 131.9 and 155.7 (Found: $\mathrm{M}^{+}, 252.0937 . \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires 252.0932).

4-Amino-7-(3,4-isopropylidenedioxybutyl)thieno[3,2-d]-
pyrimidine 38.-Formamidine acetate (4.0 g) was added in several portions over 4 days to a refluxing solution of the pyrrole $37(1.0 \mathrm{~g})$ in ethanol (50 ml). After evaporation, the product was extracted into chloroform. The washed, dried, chloroform solution was evaporated and the residue chromatographed on silica, with toluene-ether (1:1) as eluent. Recrystallization of the residue from ether-light petroleum gave the thienopyrimidine $38(0.55 \mathrm{~g}, 50 \%)$ as white crystals, m.p. 113$114{ }^{\circ} \mathrm{C} ; \mathrm{v}_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3350\left(\mathrm{NH}_{2}\right)$ and $1660 ; \delta_{\mathrm{H}}(200 \mathrm{MHz})$ 1.35 and 1.42 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CMe})_{2}$), $2.0\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}\right), 3.0(2 \mathrm{H}$, $\left.\mathrm{m}, 1^{\prime}-\mathrm{H}_{2}\right), 3.57\left(1 \mathrm{H}, \mathrm{dd}, J 7.6,7.2,4^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 4.04(1 \mathrm{H}, \mathrm{dd}, J 7.7,5.9$, $\left.4^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.13\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 5.4\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 7.40(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H})$ and $8.62(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}) ; \delta_{\mathrm{C}}(50 \mathrm{MHz}) 24.1\left(\mathrm{C}-2^{\prime}\right), 25.7$ and 27.0 (CMe_{2}), 32.9 ($\mathrm{C}-1^{\prime}$), 69.3 (C-4'), 75.4 (C-3'), $108.8\left(\mathrm{CMe}_{2}\right)$, 115.3, 126.7 (C-6), 137.8, 154.7 (C-2), 158.0 and 159.3 (Found: C, $55.8 ; \mathrm{H}, 6.1 ; \mathrm{N}, 15.4 \% ; \mathrm{M}^{+}, 279.1048 . \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ requires C , 55.9; H, 6.1; N, 15.1\%; M, 279.1041).

4-Amino-7-(3,4-dihydroxybutyl)thieno[3,2-d] pyrimidine

 12.-The isopropylidene derivative $38(0.4 \mathrm{~g})$ was treated with acetic acid-water $(1: 1 ; 15 \mathrm{ml})$ at $70^{\circ} \mathrm{C}$ for 0.5 h . Evaporation and recrystallization of the residue from methanol-ether gave the diol $12(0.265 \mathrm{~g}, 77 \%)$, m.p. $173-174^{\circ} \mathrm{C} ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$$3340(\mathrm{NH}), 3150(\mathrm{OH})$ and $1660 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz},\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO) $1.6\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{\mathrm{a}}\right) 1.85\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 2.85\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}_{2}\right), 3.3$ $(2 \mathrm{H}, \mathrm{m}), 3.4(1 \mathrm{H}, \mathrm{m}), 4.50(1 \mathrm{H}, \mathrm{t}, \mathrm{OH}), 4.65(1 \mathrm{H}, \mathrm{d}, \mathrm{OH}), 7.4$ ($2 \mathrm{H}, \mathrm{br}$ s, NH_{2}) , $7.72(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 8.37(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}) ; \delta_{\mathrm{C}}(50$ $\mathrm{MHz},\left[{ }^{2} \mathrm{H}_{6}\right]$-DMSO) 23.4 (C-2'), 33.0 (C-1'), 65.9 (C-4'), 70.6 (C-3'), 114.2, 127.3 (C-6), 137.6, 154.4 (C-2), 158.4 and 158.5; $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 250(\varepsilon 11620)$ and 293 (13 320); m/z $239\left(\mathrm{M}^{+}\right)$, $238(\mathrm{M}-\mathrm{H})^{+}$and $221\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right)^{+}$[Found: $(\mathrm{M}-\mathrm{H})^{+}$ 238.0653. $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ requires 238.0650. Found: C, 46.6; H , $5.6 ; \mathrm{N}, 16.3 . \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S} \cdot \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 46.7 ; \mathrm{H}, 5.8 ; \mathrm{N}$, 16.3%].

6-Benzyloxy-5-benzyloxymethylhex-2-enonitrile 40.-The acetal $39{ }^{24}(10 \mathrm{~g})$ was stirred for 2 h with trifluoroacetic acid $(10 \mathrm{ml})$ and water $(100 \mathrm{ml})$ at room temperature. The mixture was neutralized with aqueous potassium carbonate (6 mol dm^{-3}) and extracted with dichloromethane ($2 \times 300 \mathrm{ml}$). The extract was evaporated to $c a .100 \mathrm{ml}$, and this was then added dropwise to a solution of cyanomethylenetriphenylphosphorane $(12 \mathrm{~g})$ in dichloromethane $(100 \mathrm{ml})$. After 0.5 h , the solvent was evaporated and the residue chromatographed on silica, with toluene-ether ($2: 1$) as eluent, to give unsaturated nitrile 40 (8.5 $\mathrm{g}, 91 \%$) as a colourless oily mixture of E - and Z-isomers; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2210(\mathrm{C} \equiv \mathrm{N})$ and $1630(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 2.10$ $(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.35\left(1.2 \mathrm{H}, \mathrm{dt}, J 7.3,1.5,4-\mathrm{H}_{2} \operatorname{trans}\right), 2.58(0.8 \mathrm{H}$, $\mathrm{dt}, J 7.7,1.4,4-\mathrm{H}_{2}$ cis $), 3.45\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OBn}\right), 4.45(2.4 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{2} \mathrm{Ph}$ trans $), 4.47\left(1.6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right.$ cis $), 5.23(0.6 \mathrm{H}, \mathrm{dt}, J 16.3$, $1.5,2-\mathrm{H}$ trans $), 5.30(0.4 \mathrm{H}, \mathrm{dt}, J 10.9,1.5,2-\mathrm{H}$ cis) $), 6.51(0.4 \mathrm{H}, \mathrm{dt}$, $J 10.9,7.7,3-\mathrm{H}$ cis), $6.66(0.6, \mathrm{dt}, J 16.3,7.5,3 \mathrm{H}-$ trans $)$ and 7.32 $(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ (Found: $\mathrm{M}^{+}, 321.1719 . \mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{2}$ requires 321.1729).

6-Benzyloxy-5-(benzyloxymethyl)hexanonitrile 41.--The alkene $40(8.5 \mathrm{~g})$ was hydrogenated in methanol (100 ml) over 5% Pd-on-C as catalyst. The mixture was filtered and evaporated and the residue chromatographed on silica, with toluene-ether ($10: 1$) as eluent to give the nitrile 41 ($6.38 \mathrm{~g}, 75 \%$) as a colourless oil, $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2240(\mathrm{C} \equiv \mathrm{N}) ; \delta_{\mathrm{H}}(200 \mathrm{MHz})$ $1.5-1.8\left(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}, 4-\mathrm{H}_{2}\right), 1.95(1 \mathrm{H}$, septet, $J 5.5,5-\mathrm{H}), 2.31$ $\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.9,2-\mathrm{H}_{2}\right), 3.48\left(2 \mathrm{H}, \mathrm{AB}\right.$ of ABX, $\left.\mathrm{CH}_{2} \mathrm{OBn}\right), 4.50(4 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}{ }_{2} \mathrm{Ph}\right)$ and $7.32(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(50 \mathrm{MHz}) 17.3(\mathrm{C}-3)$, 23.1 (C-2), $28.2(\mathrm{C}-4), 38.9(\mathrm{C}-5), 70.6(\mathrm{C}-6), 73.1\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$, $119.6(\mathrm{CN}), 127.5,128.3$ and 138.4 (Found: $\mathrm{M}^{+}, 323.1883$. $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{2}$ requires 323.1884).

2-[4-Benzyloxy-(3-benzyloxymethyl)butyl]-3-(cyanomethyleneamino) acrylonitrile 42.-To a stirred mixture of the nitrile $41(10 \mathrm{~g})$, sodium hydride $(60 \% ; 3.8 \mathrm{~g})$ and ether (40 ml) was added dropwise, over 8 h , a mixture of ethyl formate (20 ml), ethanol (1 ml) and ether (40 ml). After a further 15 h , the sodium salt of the formylated nitrile was extracted into water (100 ml) [unchanged nitrile 41 (7 g) could be recovered from the ether layer.] The aqueous layer was neutralized (1 m HCl) and extracted with chloroform $(3 \times 200 \mathrm{ml})$. The dried extracts were evaporated and the residue ($c a .2 \mathrm{~g}$) in methanol (30 ml) was treated with anhydrous sodium acetate (0.92 g), aminoacetonitrile hydrochloride (0.92 g) and water (1 ml). The mixture was stirred for 20 h and then partitioned between chloroform (100 ml) and ice-water (40 ml). The washed, dried, organic layer was evaporated and chromatography of the residue on silica, with toluene-ether $(4: 1)$ as eluent, gave the enaminonitrile $42(1.5 \mathrm{~g}, 13 \%)$ as an oily mixture (ca. 3:1) of isomers, unstable on storage; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3350(\mathrm{NH}), 2200$ (CN) and $1650(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 1.6\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}\right), 1.95(1$ $\left.\mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 2.2\left(2 \mathrm{H}, \mathrm{t}, 1^{\prime}-\mathrm{H}_{2}\right), 3.02\left(2 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{2} \mathrm{CN}\right), 3.55(4 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{OBn}\right), 4.5\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.95$ and $5.50(1 \mathrm{H}, 2 \mathrm{~m}$, $\mathrm{NH}), 6.30(0.3 \mathrm{H}, \mathrm{d}, J 12.8,3-\mathrm{H}), 6.43(0.7 \mathrm{H}, \mathrm{d}, J 12.8,3-\mathrm{H})$ and $7.37(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz}\right.$, major isomer) $24.4\left(\mathrm{C}-2^{\prime}\right), 29.4$
$\left(\mathrm{C}^{\prime} 1^{\prime}\right), 34.4\left(\mathrm{CH}_{2} \mathrm{CN}\right), 37.1\left(\mathrm{C}-3^{\prime}\right), 73.1\left(\mathrm{C}-4^{\prime}\right), 73.5\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 83.5$ (C-2), 116.1 and $122.0(\mathrm{CN}), 128.1,128.8,137.8$ and $146.4(\mathrm{C}-3)$ (Found: $\mathrm{M}^{+}, 389.2127 . \mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires 389.2102).

3-Amino-4-[4-benzyloxy-(3-benzyloxymethyl)butyl]-2-cyanopyrrole 44.-A solution of compound $42(2.0 \mathrm{~g})$ in dichloromethane (45 ml) at $0^{\circ} \mathrm{C}$ was treated with DBN $(1.3 \mathrm{ml})$, followed by ethyl chloroformate $(0.82 \mathrm{ml})$ in dichloromethane (5 $\mathrm{ml})$. After 1 h the mixture was evaporated and the residue chromatographed on silica, with toluene-ether $(2: 1)$ as eluent to give the N-ethoxycarbonyl derivative $43(1.1 \mathrm{~g}) ; \delta_{\mathrm{H}}(60 \mathrm{MHz})$ $1.3(3 \mathrm{H}, \mathrm{t}), 1.4-2.4(5 \mathrm{H}, \mathrm{m}), 3.4(4 \mathrm{H}, \mathrm{m}), 4.2(2 \mathrm{H}, \mathrm{q}), 4.4(4 \mathrm{H}, \mathrm{s})$, $4.8(2 \mathrm{H}, \mathrm{s})$ and $7.2(11 \mathrm{H}, \mathrm{m})$. This material in ether $(20 \mathrm{ml})$ was treated with sodium hydride $(60 \% ; 0.3 \mathrm{~g})$ and ethanol $(0.1 \mathrm{ml})$ for 3 h at room temperature. Water was added, and the twophase mixture was stirred vigorously for 1 h . The organic layer was separated, washed, dried and evaporated. Chromatography of the residue, eluting with toluene-ether (3:1), and recrystallization of the product from ether-light petroleum gave the pyrrole $44(0.79 \mathrm{~g}, 40 \%)$, m.p. $92-93^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $3340(\mathrm{NH})$ and $2200(\mathrm{C} \equiv \mathrm{N}) ; \delta_{\mathbf{H}}(200 \mathrm{MHz}) 1.65\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}\right)$, $2.0\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 2.35\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}_{2}\right), 3.49(4 \mathrm{H}, \mathrm{AB}$ of ABX , $\left.2 \times \mathrm{CH}_{2} \mathrm{OBn}\right), 4.48\left(4 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 6.39(1 \mathrm{H}, \mathrm{d}, J 3.1,5-\mathrm{H})$ and $7.3(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(50 \mathrm{MHz}) 21.1\left(\mathrm{C}-2^{\prime}\right), 28.8\left(\mathrm{C}-1^{\prime}\right), 38.7$ (C-3'), 71.1 (C-4'), $73.2\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 86.5,113.5,115.2(\mathrm{CN}), 121.4$ (C-5), 127.8, 128.4, 138.4 and 142.1 (Found: MH^{+}(FAB) 390.2163. $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires 390.2180 . Found: C, $74.0 ; \mathrm{H}$, $7.0 ; \mathrm{N}, 10.7 . \mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $\mathrm{C}, 74.0 ; \mathrm{H}, 6.9 ; \mathrm{N}, 10.8 \%$).

4-Amino-7-[4-benzyloxy-(3-benzyloxymethyl)butyl] pyr-

 rolo[3,2-d] pyrimidine 45.-The pyrrole $44\left(\begin{array}{llll}0.3 & \mathrm{~g})\end{array}\right.$ and formamidine acetate $(0.25 \mathrm{~g})$ were heated under reflux in ethanol (10 ml) for 5 h . The residue after evaporation was partitioned between ether and water. The washed, dried ether layers were evaporated to provide a solid which on recrystallization from ether-light petroleum gave the pyrrolopyrimidine 45 ($226 \mathrm{mg}, 70 \%$) as white crystals, m.p. $82-83^{\circ} \mathrm{C}$; $\nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3420,3100(\mathrm{NH})$ and $1650 ; \delta_{\mathrm{H}}(200 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) 1.75\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}\right), 1.94\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 2.71(2 \mathrm{H}, \mathrm{m}$, $\left.1^{\prime}-\mathrm{H}_{2}\right), 3.5\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{OBn}\right), 4.44\left(4 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.10$ $(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 7.27(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.8(1 \mathrm{H}, \mathrm{br}, \mathrm{NH})$ and $7.87(1 \mathrm{H}$, $\mathrm{s}, 2-\mathrm{H}) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 253(\varepsilon 15150)$ and 302 (5550) (Found: MH^{+}, 417.2251. $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires 417.2289. Found: C, $72.5 ; \mathrm{H}, 6.9 ; \mathrm{N}, 13.5 . \mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires $\mathrm{C}, 72.1 ; \mathrm{H}, 6.7 ; \mathrm{N}$, 13.5%).4-Amino-7-[4-hydroxy-(3-hydroxymethyl)butyl] pyrrolo[3,2d] pyrimidine 13.-The dibenzyl ether $45(136 \mathrm{mg})$ and palladium-on-charcoal $(5 \% ; 30 \mathrm{mg})$ were heated under reflux in ethanol (8 ml) and cyclohexene (4 ml) for 12 h . The mixture was filtered, evaporated and recrystallized from ethanolchloroform to give the diol $13\left(40 \mathrm{mg}, 52 \%\right.$), m.p. $260-262^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3500-3100(\mathrm{NH}, \mathrm{OH})$ and $1670 ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$, $\left[^{2} \mathrm{H}_{6}\right]$-DMSO $) 1.6\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}, 3^{\prime}-\mathrm{H}\right), 2.70\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}_{2}\right)$, $3.45\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 6.65\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 7.30(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H})$, $8.07(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and $10.6\left(1 \mathrm{H}\right.$, br s, NH); $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 253$ ($\varepsilon 13540$) and 302 (6000) [Found: $\mathrm{C}, 55.5 ; \mathrm{H}, 6.8 ; \mathrm{N}, 20.3$. $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires $\mathrm{C}, 55.9 ; \mathrm{H}, 6.8 ; \mathrm{N}, 23.7 \%$. Found: MH^{+} (FAB) 237.1327. $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires 237.1350].

Acknowledgements

We thank SERC and SmithKline Beecham Pharmaceuticals for financial support (CASE award to D. A. C.), Dr. C. T. Shanks (SmithKline Beecham Pharmaceuticals, Great Burgh) for assistance in obtaining some spectroscopic data, and Mr. M. R. Boyd and his colleagues at SmithKline Beecham Pharmaceuticals for carrying out the antiviral tests.

References

1 Part 20, J. G. Buchanan, M. Harrison, R. H. Wightman and M. R. Harnden, J. Chem. Soc., Perkin Trans. 1, 1989, 925.
2 For a review see C. K. Chu and S. J. Cutler, J. Heterocycl. Chem., 1986, 23, 289.
3 J. C. Martin, C. A. Dvorak, D. F. Smee, T. R. Matthews and J. P. H. Verheyden, J. Med. Chem., 1983, 26, 759; W. T. Ashton, J. D. Karkas, A. K. Field and R. L. Tolman, Biochem. Biophys. Res. Commun., 1982, 108, 1716; K. K. Ogilvie, N. Nguyen-ba, M. F. Gillen, B. K. Radatus, U. O. Cheriyan, H. R. Hanna, K. O. Smith and K. S. Galloway, Can. J. Chem., 1984, 62, 241.
4 M. R. Harnden, R. L. Jarvest, T. H. Bacon and M. R. Boyd, J. Med. Chem., 1987, 30, 1636; M. R. Boyd, T. H. Bacon, D. Sutton and M. Cole, Antimicrob. Agents Chemother., 1987, 31, 1238.
5 E. De Clercq, J. Descamps, P. De Somer and A. Holy, Science, 1978, 200, 563.
6 A.-C. Ericson, A. Larsson, F. Y. Aoki, W. Yisak, N.-G. Johannson, B. Oberg and R. Datema, Antimicrob. Agents Chemother., 1985, 27, 753.
7 E. DeClercq, A. Holy, I. Rosenberg, T. Sakuma, J. Balzarini and P. C. Maudgal, Science, 1986, 323, 424.
8 J. G. Buchanan, A. Millar, R. H. Wightman and M. R. Harnden, J. Chem. Soc., Perkin Trans. 1, 1985, 1425.
9 G. J. Ellames, I. M. Newington and A. Stobie, J. Chem. Soc., Perkin Trans. 1, 1985, 2087.
10 G. V. Ullas, C. K. Chu, M. K. Ahn and Y. Kosugi, J. Org. Chem., 1988, 53, 2413.
11 L. M. Beauchamp, B. L. Dolmatch, H. J. Schaeffer, P. Collins, D. J. Bauer, P. M. Keller and J. A. Fyfe, J. Med. Chem., 1985, 28, 982.
12 F. Seela and A. Kehne, Ann. Chem., 1982, 1940; M. P. La Montagne, D. C. Smith and G.-S. Wu, J. Heterocycl. Chem., 1983, 20, 295; F. Seela, A. Kehne and H. D. Winkeler, Ann. Chem., 1983, 137; D. P. C. McGee, J. C. Martin and J. P. H. Verheyden, J. Heterocycl. Chem.,

1985, 22, 1137; P. K. Gupta, M. R. Nassiri, L. A. Coleman, L. L. Wotring, J. C. Drach and L. B. Townsend, J. Med. Chem., 1989, 32, 1420.

13 M.-I. Lim, R. S. Klein and J. J. Fox, J. Org. Chem., 1979, 44, 3826.
14 M.-I. Lim, R. S. Klein and J. J. Fox, Tetrahedron Lett., 1980, 21, 1013; M.-I. Lim and R. S. Klein, Tetrahedron Lett., 1981, 22, 25; M.-I. Lim, W.-Y. Ren, B. A. Otter and R. S. Klein, J. Org.-Chem., 1983, 48, 780.
15 European patent application 0071227 (to Sloan-Kettering Institute), 9 February 1983.
16 For an alternative approach, see T. L. Cupps, D. S. Wise, Jr. and L. B. Townsend, J. Org. Chem., 1986, 51, 1058.
17 W.-Y. Ren, M.-I. Lim, B. A. Otter and R. S. Klein, J. Org. Chem., 1982, 47, 4633.
18 E. Baer and H. O. L. Fischer, J. Am. Chem. Soc., 1939, 61, 761.'
19 F. Alonso Cermeno, A. M. Gonzalez Nogal and F. J. Lopez Aparicio, An. Quim., 1972, 68, 293.
20 R. F. Abdulla and R. S. Brinkmeyer, Tetrahedron, 1979, 35, 1675, and refs. therein.
21 S. De Bernardo and M. Weigele, J. Org. Chem., 1977, 42, 109.
22 S. Takano, E. Goto, M. Hirama and K. Ogasawara, Heterocycles, 1981, 16, 951 ; E. Baer and H. O. L. Fischer, J. Am. Chem. Soc., 1948, 70, 609.
23 D. B. Gerth and B. Giese, J. Org. Chem., 1986, 51, 3726.
24 U. K. Pandit, W. F. A. Grose and T. A. Eggelte, Synth. Commun., 1972, 2, 345; S. Bailey and M. R. Harnden, J. Chem. Soc., Perkin Trans. 1, 1988, 2767.

Paper 0/02911D
Received 28th June 1990
Accepted 13th September 1990

[^0]: 4-Amino-7-[(S)-2,3-isopropylidenedioxypropyl]thieno[3,2-

